Let Sn={1,2,⋯,n} and fn:Sn→Sn be defined inductively as follows: f1(1)=1,fn(2j)=j (j=1,2,⋯,[n/2]) and
* if n=2k (k≥1), then fn(2j−1)=fk(j)+k (j=1,2,⋯,k);
* if n=2k+1 (k≥1), then fn(2k+1)=k+fk+1(1),fn(2j−1)=k+fk+1(j+1) (j=1,2,⋯,k).Prove that fn(x)=x if and only if x is an integer of the form
2d+1−1(2n+1)(2d−1)
for some positive integer d. algebrafunctional equationDivisibilityrecurrence relationIMO ShortlistIMO Longlist