MathDB
Problems
Contests
International Contests
IMO Longlists
1989 IMO Longlists
3
3
Part of
1989 IMO Longlists
Problems
(1)
For each non-zero complex number z
Source: IMO Longlist 1989, Problem 102
9/18/2008
For each non-zero complex number
z
,
z,
z
,
let
arg
(
z
)
\arg(z)
ar
g
(
z
)
be the unique real number
t
t
t
such that \minus{}\pi < t \leq \pi and z \equal{} |z|(\cos(t) \plus{} \textrm{i} sin(t)). Given a real number
c
>
0
c > 0
c
>
0
and a complex number
z
≠
0
z \neq 0
z
=
0
with
arg
z
≠
π
,
\arg z \neq \pi,
ar
g
z
=
π
,
define B(c, z) \equal{} \{b \in \mathbb{R} \ ; \ |w \minus{} z| < b \Rightarrow |\arg(w) \minus{} \arg(z)| < c\}. Determine necessary and sufficient conditions, in terms of
c
c
c
and
z
,
z,
z
,
such that
B
(
c
,
z
)
B(c, z)
B
(
c
,
z
)
has a maximum element, and determine what this maximum element is in this case.
algebra unsolved
algebra