MathDB
Problems
Contests
International Contests
IMO Longlists
1986 IMO Longlists
78
78
Part of
1986 IMO Longlists
Problems
(1)
Geometric inequality with sin and cos
Source:
8/29/2010
If
T
T
T
and
T
1
T_1
T
1
are two triangles with angles
x
,
y
,
z
x, y, z
x
,
y
,
z
and
x
1
,
y
1
,
z
1
x_1, y_1, z_1
x
1
,
y
1
,
z
1
, respectively, prove the inequality
cos
x
1
sin
x
+
cos
y
1
sin
y
+
cos
z
1
sin
z
≤
cot
x
+
cot
y
+
cot
z
.
\frac{\cos x_1}{\sin x}+\frac{\cos y_1}{\sin y}+\frac{\cos z_1}{\sin z} \leq \cot x+\cot y+\cot z.
sin
x
cos
x
1
+
sin
y
cos
y
1
+
sin
z
cos
z
1
≤
cot
x
+
cot
y
+
cot
z
.
inequalities
trigonometry
function
geometry unsolved
geometry