MathDB
Problems
Contests
International Contests
IMO Longlists
1985 IMO Longlists
51
51
Part of
1985 IMO Longlists
Problems
(1)
Constant sequence (Bothered me a lot to type it)
Source:
9/13/2010
Let
f
1
=
(
a
1
,
a
2
,
…
,
a
n
)
,
n
>
2
f_1 = (a_1, a_2, \dots , a_n) , n > 2
f
1
=
(
a
1
,
a
2
,
…
,
a
n
)
,
n
>
2
, be a sequence of integers. From
f
1
f_1
f
1
one constructs a sequence
f
k
f_k
f
k
of sequences as follows: if
f
k
=
(
c
1
,
c
2
,
…
,
c
n
)
f_k = (c_1, c_2, \dots, cn)
f
k
=
(
c
1
,
c
2
,
…
,
c
n
)
, then
f
k
+
1
=
(
c
i
1
,
c
i
2
,
c
i
3
+
1
,
c
i
4
+
1
,
.
.
.
,
c
i
n
+
1
)
f_{k+1} = (c_{i_{1}}, c_{i_{2}}, c_{i_{3}} + 1, c_{i_{4}} + 1, . . . , c_{i_{n}} + 1)
f
k
+
1
=
(
c
i
1
,
c
i
2
,
c
i
3
+
1
,
c
i
4
+
1
,
...
,
c
i
n
+
1
)
, where
(
c
i
1
,
c
i
2
,
…
,
c
i
n
)
(c_{i_{1}}, c_{i_{2}},\dots , c_{i_{n}})
(
c
i
1
,
c
i
2
,
…
,
c
i
n
)
is a permutation of
(
c
1
,
c
2
,
…
,
c
n
)
(c_1, c_2, \dots, c_n)
(
c
1
,
c
2
,
…
,
c
n
)
. Give a necessary and sufficient condition for
f
1
f_1
f
1
under which it is possible for
f
k
f_k
f
k
to be a constant sequence
(
b
1
,
b
2
,
…
,
b
n
)
,
b
1
=
b
2
=
⋯
=
b
n
(b_1, b_2,\dots , b_n), b_1 = b_2 =\cdots = b_n
(
b
1
,
b
2
,
…
,
b
n
)
,
b
1
=
b
2
=
⋯
=
b
n
, for some
k
.
k.
k
.
algebra proposed
algebra