MathDB
Problems
Contests
International Contests
IMO Longlists
1983 IMO Longlists
59
59
Part of
1983 IMO Longlists
Problems
(1)
Solve the equation tan^2(2x) + 2 tan(2x) · tan(3x) −1 = 0
Source:
10/7/2010
Solve the equation
tan
2
(
2
x
)
+
2
tan
(
2
x
)
⋅
tan
(
3
x
)
−
1
=
0.
\tan^2(2x) + 2 \tan(2x) \cdot \tan(3x) -1 = 0.
tan
2
(
2
x
)
+
2
tan
(
2
x
)
⋅
tan
(
3
x
)
−
1
=
0.
trigonometry
algebra proposed
algebra