MathDB
Problems
Contests
International Contests
IMO Longlists
1982 IMO Longlists
56
56
Part of
1982 IMO Longlists
Problems
(1)
Polynomial mixed with Inequality
Source: Iranian MO 2009 2nd round - IMO Longlist 1982 P56
4/7/2010
Let
f
(
x
)
=
a
x
2
+
b
x
+
c
f(x) = ax^2 + bx+ c
f
(
x
)
=
a
x
2
+
b
x
+
c
and
g
(
x
)
=
c
x
2
+
b
x
+
a
g(x) = cx^2 + bx + a
g
(
x
)
=
c
x
2
+
b
x
+
a
. If
∣
f
(
0
)
∣
≤
1
,
∣
f
(
1
)
∣
≤
1
,
∣
f
(
−
1
)
∣
≤
1
|f(0)| \leq 1, |f(1)| \leq 1, |f(-1)| \leq 1
∣
f
(
0
)
∣
≤
1
,
∣
f
(
1
)
∣
≤
1
,
∣
f
(
−
1
)
∣
≤
1
, prove that for
∣
x
∣
≤
1
|x| \leq 1
∣
x
∣
≤
1
,(a)
∣
f
(
x
)
∣
≤
5
/
4
|f(x)| \leq 5/4
∣
f
(
x
)
∣
≤
5/4
,(b)
∣
g
(
x
)
∣
≤
2
|g(x)| \leq 2
∣
g
(
x
)
∣
≤
2
.
algebra
polynomial
inequalities
conics
parabola
analytic geometry
graphing lines