MathDB
Problems
Contests
International Contests
IMO Longlists
1977 IMO Longlists
60
60
Part of
1977 IMO Longlists
Problems
(1)
Show that at least one of the numbers is greater than n!/2^n
Source:
1/11/2011
Suppose
x
0
,
x
1
,
…
,
x
n
x_0, x_1, \ldots , x_n
x
0
,
x
1
,
…
,
x
n
are integers and
x
0
>
x
1
>
⋯
>
x
n
.
x_0 > x_1 > \cdots > x_n.
x
0
>
x
1
>
⋯
>
x
n
.
Prove that at least one of the numbers
∣
F
(
x
0
)
∣
,
∣
F
(
x
1
)
∣
,
∣
F
(
x
2
)
∣
,
…
,
∣
F
(
x
n
)
∣
,
|F(x_0)|, |F(x_1)|, |F(x_2)|, \ldots, |F(x_n)|,
∣
F
(
x
0
)
∣
,
∣
F
(
x
1
)
∣
,
∣
F
(
x
2
)
∣
,
…
,
∣
F
(
x
n
)
∣
,
where F(x) = x^n + a_1x^{n-1} + \cdots+ a_n, a_i \in \mathbb R, i = 1, \ldots , n, is greater than
n
!
2
n
.
\frac{n!}{2^n}.
2
n
n
!
.
algebra unsolved
algebra