MathDB
Problems
Contests
International Contests
IMO Longlists
1974 IMO Longlists
31
31
Part of
1974 IMO Longlists
Problems
(1)
n variables inequality with α, λ [ILL 1974]
Source:
1/2/2011
Let
y
α
=
∑
i
=
1
n
x
i
α
y^{\alpha}=\sum_{i=1}^n x_i^{\alpha}
y
α
=
∑
i
=
1
n
x
i
α
where
α
≠
0
,
y
>
0
,
x
i
>
0
\alpha \neq 0, y > 0, x_i > 0
α
=
0
,
y
>
0
,
x
i
>
0
are real numbers, and let
λ
≠
α
\lambda \neq \alpha
λ
=
α
be a real number. Prove that
y
λ
>
∑
i
=
1
n
x
i
λ
y^{\lambda} > \sum_{i=1}^n x_i^{\lambda}
y
λ
>
∑
i
=
1
n
x
i
λ
if
α
(
λ
−
α
)
>
0
,
\alpha (\lambda - \alpha) > 0,
α
(
λ
−
α
)
>
0
,
and
y
λ
<
∑
i
=
1
n
x
i
λ
y^{\lambda} < \sum_{i=1}^n x_i^{\lambda}
y
λ
<
∑
i
=
1
n
x
i
λ
if
α
(
λ
−
α
)
<
0.
\alpha (\lambda - \alpha) < 0.
α
(
λ
−
α
)
<
0.
inequalities
inequalities proposed