MathDB
Problems
Contests
International Contests
IMO Longlists
1972 IMO Longlists
19
19
Part of
1972 IMO Longlists
Problems
(1)
Subset of real numbers with properties
Source:
11/2/2010
Let
S
S
S
be a subset of the real numbers with the following properties:
(
i
)
(i)
(
i
)
If
x
∈
S
x \in S
x
∈
S
and
y
∈
S
y \in S
y
∈
S
, then
x
−
y
∈
S
x - y \in S
x
−
y
∈
S
;
(
i
i
)
(ii)
(
ii
)
If
x
∈
S
x \in S
x
∈
S
and
y
∈
S
y \in S
y
∈
S
, then
x
y
∈
S
xy \in S
x
y
∈
S
;
(
i
i
i
)
(iii)
(
iii
)
S
S
S
contains an exceptional number
x
′
x'
x
′
such that there is no number
y
y
y
in
S
S
S
satisfying
x
′
y
+
x
′
+
y
=
0
x'y + x' + y = 0
x
′
y
+
x
′
+
y
=
0
;
(
i
v
)
(iv)
(
i
v
)
If
x
∈
S
x \in S
x
∈
S
and
x
≠
x
′
x \neq x'
x
=
x
′
, there is a number
y
y
y
in
S
S
S
such that
x
y
+
x
+
y
=
0
xy+x+y = 0
x
y
+
x
+
y
=
0
. Show that
(
a
)
(a)
(
a
)
S
S
S
has more than one number in it;
(
b
)
(b)
(
b
)
x
′
≠
−
1
x' \neq -1
x
′
=
−
1
leads to a contradiction;
(
c
)
(c)
(
c
)
x
∈
S
x \in S
x
∈
S
and
x
≠
0
x \neq 0
x
=
0
implies
1
/
x
∈
S
1/x \in S
1/
x
∈
S
.
algebra unsolved
algebra