MathDB
Problems
Contests
International Contests
IberoAmerican
2021 Iberoamerican
3
3
Part of
2021 Iberoamerican
Problems
(1)
Sequence with condition on million consecutive terms
Source: 2021 Iberoamerican Mathematical Olympiad, P3
10/20/2021
Let
a
1
,
a
2
,
a
3
,
…
a_1,a_2,a_3, \ldots
a
1
,
a
2
,
a
3
,
…
be a sequence of positive integers and let
b
1
,
b
2
,
b
3
,
…
b_1,b_2,b_3,\ldots
b
1
,
b
2
,
b
3
,
…
be the sequence of real numbers given by b_n = \dfrac{a_1a_2\cdots a_n}{a_1+a_2+\cdots + a_n},\ \mbox{for}\ n\geq 1 Show that, if there exists at least one term among every million consecutive terms of the sequence
b
1
,
b
2
,
b
3
,
…
b_1,b_2,b_3,\ldots
b
1
,
b
2
,
b
3
,
…
that is an integer, then there exists some
k
k
k
such that
b
k
>
202
1
2021
b_k > 2021^{2021}
b
k
>
202
1
2021
.
inequalities