MathDB
Problems
Contests
International Contests
IberoAmerican
2019 IberoAmerican
6
6
Part of
2019 IberoAmerican
Problems
(1)
2019 Iberoamerican Mathematical Olympiad P6
Source:
9/16/2019
Let
a
1
,
a
2
,
…
,
a
2019
a_1, a_2, \dots, a_{2019}
a
1
,
a
2
,
…
,
a
2019
be positive integers and
P
P
P
a polynomial with integer coefficients such that, for every positive integer
n
n
n
,
P
(
n
)
divides
a
1
n
+
a
2
n
+
⋯
+
a
2019
n
.
P(n) \text{ divides } a_1^n+a_2^n+\dots+a_{2019}^n.
P
(
n
)
divides
a
1
n
+
a
2
n
+
⋯
+
a
2019
n
.
Prove that
P
P
P
is a constant polynomial.
algebra
polynomial