MathDB
Problems
Contests
International Contests
IberoAmerican
2018 lberoAmerican
5
5
Part of
2018 lberoAmerican
Problems
(1)
Maximums and minimums in permutation
Source: Iberoamerican 2018 Problem 5
9/26/2018
Let
n
n
n
be a positive integer. For a permutation
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \dots, a_n
a
1
,
a
2
,
…
,
a
n
of the numbers
1
,
2
,
…
,
n
1, 2, \dots, n
1
,
2
,
…
,
n
we define
b
k
=
min
1
≤
i
≤
k
a
i
+
max
1
≤
j
≤
k
a
j
b_k = \min_{1 \leq i \leq k} a_i + \max_{1 \leq j \leq k} a_j
b
k
=
1
≤
i
≤
k
min
a
i
+
1
≤
j
≤
k
max
a
j
We say that the permutation
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \dots, a_n
a
1
,
a
2
,
…
,
a
n
is guadiana if the sequence
b
1
,
b
2
,
…
,
b
n
b_1, b_2, \dots, b_n
b
1
,
b
2
,
…
,
b
n
does not contain two consecutive equal terms. How many guadiana permutations exist?
combinatorics