MathDB
Problems
Contests
International Contests
Hungary-Israel Binational
1996 Hungary-Israel Binational
4
4
Part of
1996 Hungary-Israel Binational
Problems
(1)
Hungary-Israel Binational 1996\4
Source: Prove that existence of a k
10/29/2008
a
1
,
a
2
,
⋯
,
a
n
a_1, a_2, \cdots, a_n
a
1
,
a
2
,
⋯
,
a
n
is a sequence of real numbers, and
b
1
,
b
2
,
⋯
,
b
n
b_1, b_2, \cdots, b_n
b
1
,
b
2
,
⋯
,
b
n
are real numbers that satisfy the condition
1
≥
b
1
≥
b
2
≥
⋯
≥
b
n
≥
0
1 \ge b_1 \ge b_2 \ge \cdots \ge b_n \ge 0
1
≥
b
1
≥
b
2
≥
⋯
≥
b
n
≥
0
. Prove that there exists a natural number
k
≤
n
k \le n
k
≤
n
that satisifes |a_1b_1 \plus{} a_2b_2 \plus{} \cdots \plus{} a_nb_n| \le |a_1 \plus{} a_2 \plus{} \cdots \plus{} a_k|
algebra unsolved
algebra