MathDB
Problems
Contests
International Contests
Czech-Polish-Slovak Match
2003 Czech-Polish-Slovak Match
2003 Czech-Polish-Slovak Match
Part of
Czech-Polish-Slovak Match
Subcontests
(5)
6
1
Hide problems
Function: f(f(x) + y) = 2x + f(f(y) − x)
Find all functions
f
:
R
→
R
f : \mathbb{R} \to \mathbb{R}
f
:
R
→
R
that satisfy the condition f(f(x) + y) = 2x + f(f(y) - x) \text{ for all } x, y \in\mathbb{R}.
4
1
Hide problems
If the resulting quad is cyclic, then ABC must be isosceles
Point
P
P
P
lies on the median from vertex
C
C
C
of a triangle
A
B
C
ABC
A
BC
. Line
A
P
AP
A
P
meets
B
C
BC
BC
at
X
X
X
, and line
B
P
BP
BP
meets
A
C
AC
A
C
at
Y
Y
Y
. Prove that if quadrilateral
A
B
X
Y
ABXY
A
BX
Y
is cyclic, then triangle
A
B
C
ABC
A
BC
is isosceles.
2
1
Hide problems
Czech-Polish-Slovak 2003 Geometry
In an acute-angled triangle
A
B
C
ABC
A
BC
the angle at
B
B
B
is greater than
4
5
∘
45^\circ
4
5
∘
. Points
D
,
E
,
F
D,E, F
D
,
E
,
F
are the feet of the altitudes from
A
,
B
,
C
A,B,C
A
,
B
,
C
respectively, and
K
K
K
is the point on segment
A
F
AF
A
F
such that
∠
D
K
F
=
∠
K
E
F
\angle DKF = \angle KEF
∠
DK
F
=
∠
K
EF
. (a) Show that such a point
K
K
K
always exists. (b) Prove that
K
D
2
=
F
D
2
+
A
F
⋅
B
F
KD^2 = FD^2 + AF \cdot BF
K
D
2
=
F
D
2
+
A
F
⋅
BF
.
1
1
Hide problems
System of equations: max(x_i, i)=x_{i+1}
Given an integer
n
≥
2
n \ge 2
n
≥
2
, solve in real numbers the system of equations \begin{align*} \max\{1, x_1\} &= x_2 \\ \max\{2, x_2\} &= 2x_3 \\ &\cdots \\ \max\{n, x_n\} &= nx_1. \\ \end{align*}
3
1
Hide problems
a,b,c and pa,qb,rc triangles with equal areas
Numbers
p
,
q
,
r
p,q,r
p
,
q
,
r
lies in the interval
(
2
5
,
5
2
)
(\frac{2}{5},\frac{5}{2})
(
5
2
,
2
5
)
nad satisfy
p
q
r
=
1
pqr=1
pq
r
=
1
. Prove that there exist two triangles of the same area, one with the sides
a
,
b
,
c
a,b,c
a
,
b
,
c
and the other with the sides
p
a
,
q
b
,
r
c
pa,qb,rc
p
a
,
q
b
,
rc
.