MathDB
Problems
Contests
International Contests
Cono Sur Olympiad
2023 Cono Sur Olympiad
6
6
Part of
2023 Cono Sur Olympiad
Problems
(1)
Sequence of sums of k-th powers
Source: Cono Sur 2023 P6
8/8/2023
Let
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
be positive reals; for any positive integer
k
k
k
, let
S
k
=
x
1
k
+
x
2
k
+
…
+
x
n
k
S_k=x_1^k+x_2^k+\ldots+x_n^k
S
k
=
x
1
k
+
x
2
k
+
…
+
x
n
k
.(a) Given that
S
1
<
S
2
S_1<S_2
S
1
<
S
2
, show that
S
1
,
S
2
,
S
3
,
…
S_1, S_2, S_3, \ldots
S
1
,
S
2
,
S
3
,
…
is strictly increasing.(b) Prove that there exists a positive integer
n
n
n
and positive reals
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
, such that
S
1
>
S
2
S_1>S_2
S
1
>
S
2
and
S
1
,
S
2
,
S
3
,
…
S_1, S_2, S_3, \ldots
S
1
,
S
2
,
S
3
,
…
is not strictly decreasing.
algebra