Let ABC be an acute triangle. Take points P and Q inside AB and AC, respectively, such that BPQC is cyclic. The circumcircle of ABQ intersects BC again in S and the circumcircle of APC intersects BC again in R, PR and QS intersect again in L. Prove that the intersection of AL and BC does not depend on the selection of P and Q. geometrycircumcircletrigonometryfunctiongeometry proposed