MathDB
Problems
Contests
International Contests
Baltic Way
2017 Baltic Way
1
1
Part of
2017 Baltic Way
Problems
(1)
Sequence
Source: Baltic Way 2017 Problem 1
11/14/2017
Let
a
0
,
a
1
,
a
2
,
.
.
.
a_0,a_1,a_2,...
a
0
,
a
1
,
a
2
,
...
be an infinite sequence of real numbers satisfying
a
n
−
1
+
a
n
+
1
2
≥
a
n
\frac{a_{n-1}+a_{n+1}}{2}\geq a_n
2
a
n
−
1
+
a
n
+
1
≥
a
n
for all positive integers
n
n
n
. Show that
a
0
+
a
n
+
1
2
≥
a
1
+
a
2
+
.
.
.
+
a
n
n
\frac{a_0+a_{n+1}}{2}\geq \frac{a_1+a_2+...+a_n}{n}
2
a
0
+
a
n
+
1
≥
n
a
1
+
a
2
+
...
+
a
n
holds for all positive integers
n
n
n
.
algebra
Inequality
Sequence
Convexity
easy sequence
induction