MathDB
Problems
Contests
International Contests
Baltic Way
2001 Baltic Way
13
13
Part of
2001 Baltic Way
Problems
(1)
There exists k such that 2001!a_k<k
Source: Baltic Way 2001
11/17/2010
Let
a
0
,
a
1
,
a
2
,
…
a_0, a_1, a_2,\ldots
a
0
,
a
1
,
a
2
,
…
be a sequence of real numbers satisfying
a
0
=
1
a_0=1
a
0
=
1
and
a
n
=
a
⌊
7
n
/
9
⌋
+
a
⌊
n
/
9
⌋
a_n=a_{\lfloor 7n/9\rfloor}+a_{\lfloor n/9\rfloor}
a
n
=
a
⌊
7
n
/9
⌋
+
a
⌊
n
/9
⌋
for
n
=
1
,
2
,
…
n=1, 2,\ldots
n
=
1
,
2
,
…
Prove that there exists a positive integer
k
k
k
with
a
k
<
k
2001
!
a_k<\frac{k}{2001!}
a
k
<
2001
!
k
.
floor function
algebra proposed
algebra