MathDB
Problems
Contests
International Contests
Balkan MO
2001 Balkan MO
3
3
Part of
2001 Balkan MO
Problems
(1)
An easy and classical inequality in 3 variables abc<=a+b+c
Source: Balkan MO 2001, problem 3
4/24/2006
Let
a
a
a
,
b
b
b
,
c
c
c
be positive real numbers with
a
b
c
≤
a
+
b
+
c
abc \leq a+b+c
ab
c
≤
a
+
b
+
c
. Show that
a
2
+
b
2
+
c
2
≥
3
a
b
c
.
a^2 + b^2 + c^2 \geq \sqrt 3 abc.
a
2
+
b
2
+
c
2
≥
3
ab
c
.
Cristinel Mortici, Romania
inequalities
inequalities proposed
algebra