MathDB
Problems
Contests
International Contests
Balkan MO
1994 Balkan MO
3
3
Part of
1994 Balkan MO
Problems
(1)
Determine the largest possible value of sum involving permut
Source: Balkan MO 1994, Problem 3
4/25/2006
Let
a
1
,
a
2
,
…
,
a
n
a_1,a_2,\ldots,a_n
a
1
,
a
2
,
…
,
a
n
be a permutation of the numbers
1
,
2
,
…
,
n
1,2,\ldots,n
1
,
2
,
…
,
n
, with
n
≥
2
n\geq 2
n
≥
2
. Determine the largest possible value of the sum
S
(
n
)
=
∣
a
2
−
a
1
∣
+
∣
a
3
−
a
2
∣
+
⋯
+
∣
a
n
−
a
n
−
1
∣
.
S(n)=|a_2-a_1|+ |a_3-a_2| + \cdots + |a_n-a_{n-1}| .
S
(
n
)
=
∣
a
2
−
a
1
∣
+
∣
a
3
−
a
2
∣
+
⋯
+
∣
a
n
−
a
n
−
1
∣.
Romania
algebra proposed
algebra
inequalities
n-variable inequality