MathDB
Problems
Contests
International Contests
Balkan MO
1989 Balkan MO
1
1
Part of
1989 Balkan MO
Problems
(1)
n positive integer and d_{k}, k<=n its divisors
Source: bmo 1989
4/23/2007
Let
n
n
n
be a positive integer and let
d
1
,
d
2
,
,
…
,
d
k
d_{1},d_{2},,\ldots ,d_{k}
d
1
,
d
2
,,
…
,
d
k
be its divisors, such that
1
=
d
1
<
d
2
<
…
<
d
k
=
n
1=d_{1}<d_{2}<\ldots <d_{k}=n
1
=
d
1
<
d
2
<
…
<
d
k
=
n
. Find all values of
n
n
n
for which
k
≥
4
k\geq 4
k
≥
4
and
n
=
d
1
2
+
d
2
2
+
d
3
2
+
d
4
2
n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}
n
=
d
1
2
+
d
2
2
+
d
3
2
+
d
4
2
.
search
number theory proposed
number theory