MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2016 Balkan MO Shortlist
A4
A4
Part of
2016 Balkan MO Shortlist
Problems
(1)
min of (a^{-n}+b)/(1-a)+(b^{-n}+c)/(1-b)+(c^{-n}+a)/(1-c) if a+b+c=1, a,b,c>0
Source: Balkan BMO Shortlist 2016 A4
7/30/2019
The positive real numbers
a
,
b
,
c
a, b, c
a
,
b
,
c
satisfy the equality
a
+
b
+
c
=
1
a + b + c = 1
a
+
b
+
c
=
1
. For every natural number
n
n
n
find the minimal possible value of the expression
E
=
a
−
n
+
b
1
−
a
+
b
−
n
+
c
1
−
b
+
c
−
n
+
a
1
−
c
E=\frac{a^{-n}+b}{1-a}+\frac{b^{-n}+c}{1-b}+\frac{c^{-n}+a}{1-c}
E
=
1
−
a
a
−
n
+
b
+
1
−
b
b
−
n
+
c
+
1
−
c
c
−
n
+
a
algebra
inequalities
minimum
three variable inequality