MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2011 Balkan MO Shortlist
N1
N1
Part of
2011 Balkan MO Shortlist
Problems
(1)
Prove the given congruency
Source: Balkan MO ShortList 2011 N1
4/6/2020
Given an odd number
n
>
1
n >1
n
>
1
, let \begin{align*} S =\{ k \mid 1 \le k < n , \gcd(k,n) =1 \} \end{align*} and let \begin{align*} T = \{ k \mid k \in S , \gcd(k+1,n) =1 \} \end{align*} For each
k
∈
S
k \in S
k
∈
S
, let
r
k
r_k
r
k
be the remainder left by
k
∣
S
∣
−
1
n
\frac{k^{|S|}-1}{n}
n
k
∣
S
∣
−
1
upon division by
n
n
n
. Prove \begin{align*} \prod _{k \in T} \left( r_k - r_{n-k} \right) \equiv |S| ^{|T|} \pmod{n} \end{align*}