MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2011 Balkan MO Shortlist
A4
A4
Part of
2011 Balkan MO Shortlist
Problems
(1)
Inequality with condition xyz=3(x+y+z)
Source: Balkan MO ShortList 2011 A4
4/6/2020
Let
x
,
y
,
z
ā
R
+
x,y,z \in \mathbb{R}^+
x
,
y
,
z
ā
R
+
satisfying
x
y
z
=
3
(
x
+
y
+
z
)
xyz=3(x+y+z)
x
yz
=
3
(
x
+
y
+
z
)
. Prove, that \begin{align*} \sum \frac{1}{x^2(y+1)} \geq \frac{3}{4(x+y+z)} \end{align*}
inequalities
algebra
High school olympiad
Balkan