MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2009 Balkan MO Shortlist
A7
A7
Part of
2009 Balkan MO Shortlist
Problems
(1)
Prove that the given polynomial is irreducible
Source: Balkan MO ShortList 2009 A7
4/6/2020
Let
n
≥
2
n\geq 2
n
≥
2
be a positive integer and \begin{align*} P(x) = c_0 X^n + c_1 X^{n-1} + \ldots + c_{n-1} X +c_n \end{align*} be a polynomial with integer coefficients, such that
∣
c
n
∣
\mid c_n \mid
∣
c
n
∣
is a prime number and \begin{align*} |c_0| + |c_1| + \ldots + |c_{n-1}| < |c_n| \end{align*} Prove that the polynomial
P
(
X
)
P(X)
P
(
X
)
is irreducible in the
Z
[
x
]
\mathbb{Z}[x]
Z
[
x
]