MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2009 Balkan MO Shortlist
A5
A5
Part of
2009 Balkan MO Shortlist
Problems
(1)
An inequality on the coefficients of a monic polynomial
Source: Balkan MO ShortList 2009 A5
4/6/2020
Given the monic polynomial \begin{align*} P(x) = x^N +a_{N-1}x^{N-1} + \ldots + a_1 x + a_0 \in \mathbb{R}[x] \end{align*} of even degree
N
N
N
=
=
=
2
n
2n
2
n
and having all real positive roots
x
i
x_i
x
i
, for
1
≤
i
≤
N
1 \le i \le N
1
≤
i
≤
N
. Prove, for any
c
c
c
∈
\in
∈
[
0
,
min
1
≤
i
≤
N
{
x
i
}
)
[0, \underset{1 \le i \le N}{\min} \{x_i \} )
[
0
,
1
≤
i
≤
N
min
{
x
i
})
, the following inequality \begin{align*} c + \sqrt[N]{P(c)} \le \sqrt[N]{a_0} \end{align*}