MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2007 Balkan MO Shortlist
N5
N5
Part of
2007 Balkan MO Shortlist
Problems
(1)
sum of q_ibeta_i is greater than p^2
Source: Balkan MO ShortList 2007 N5
4/6/2020
Let
p
≥
5
p \geq 5
p
≥
5
be a prime and let \begin{align*} (p-1)^p +1 = \prod _{i=1}^n q_i^{\beta_i} \end{align*} where
q
i
q_i
q
i
are primes. Prove, \begin{align*} \sum_{i=1}^n q_i \beta_i >p^2 \end{align*}
prime numbers
Inequality
number theory