Let A1A2A3A4A5 be a convex pentagon, such that
[A_{1}A_{2}A_{3}] \equal{} [A_{2}A_{3}A_{4}] \equal{} [A_{3}A_{4}A_{5}] \equal{} [A_{4}A_{5}A_{1}] \equal{} [A_{5}A_{1}A_{2}].
Prove that there exists a point M in the plane of the pentagon such that
[A_{1}MA_{2}] \equal{} [A_{2}MA_{3}] \equal{} [A_{3}MA_{4}] \equal{} [A_{4}MA_{5}] \equal{} [A_{5}MA_{1}].
Here [XYZ] stands for the area of the triangle ΔXYZ. geometryparallelogramtrapezoidgeometry proposed