MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2007 Balkan MO Shortlist
A8
A8
Part of
2007 Balkan MO Shortlist
Problems
(1)
Prove that a_1 =0 for a sequence of real numbers
Source: Balkan MO ShortList 2007 A8
4/6/2020
Let
c
>
2
c>2
c
>
2
and
a
0
,
a
1
,
…
a_0,a_1, \ldots
a
0
,
a
1
,
…
be a sequence of real numbers such that \begin{align*} a_n = a_{n-1}^2 - a_{n-1} < \frac{1}{\sqrt{cn}} \end{align*} for any
n
n
n
∈
\in
∈
N
\mathbb{N}
N
. Prove,
a
1
=
0
a_1=0
a
1
=
0
BMOSL
algebra
Sequence
recurrence relation