Let D be an interior point of the triangle ABC.
CD and AB intersect at Dc,
BD and AC intersect at Db,
AD and BC intersect at Da.
Prove that there exists a triangle KLM with orthocenter H and the feet of altitudes Hk∈LM,Hl∈KM,Hm∈KL, so that
(ADcD)=(KHmH)
(BDcD)=(LHmH)
(BDaD)=(LHkH)
(CDaD)=(MHkH)
(CDbD)=(MHlH)
(ADbD)=(KHlH)
where (PQR) denotes the area of the triangle PQR geometrygeometry proposed