Let n>1 be an integer and let f1, f2, ..., fn! be the n! permutations of 1, 2, ..., n. (Each fi is a bijective function from {1,2,...,n} to itself.) For each permutation fi, let us define S(fi)=∑k=1n∣fi(k)−k∣. Find n!1∑i=1n!S(fi). functioncombinatorics unsolvedcombinatorics