Let P be a point inside a regular tetrahedron ABCD with edge length 1. Show that d(P,AB)+d(P,AC)+d(P,AD)+d(P,BC)+d(P,BD)+d(P,CD)≥232 , with equality only when P is the centroid of ABCD.
Here d(P,XY) denotes the distance from point P to line XY. geometry3D geometrysolid geometrygeometric inequalitytetrahedron