Let
\begin{eqnarray*} f(x) & = & a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \ \ \mbox{and} \\ g(x) & = & c_{n+1} x^{n+1} + c_n x^n + \cdots + c_0 \end{eqnarray*}
be non-zero polynomials with real coefficients such that g(x)=(x+r)f(x) for some real number r. If a=max(∣an∣,…,∣a0∣) and c=max(∣cn+1∣,…,∣c0∣), prove that ca≤n+1. algebrapolynomialinequalitiesratioalgebra unsolved